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LETTER TO THE EDITOR

Frequency-dependent spin susceptibility in the
two-dimensional Hubbard model

C E Creffield, P E Kornilovitch, E G Klepfish, E R Pike and Sarben Sarkar
Department of Physics, King’s College London, Strand, London WC2R 2LS, UK

Received 5 February 1997

Abstract. A quantum Monte Carlo calculation of the dynamical spin susceptibility in the half-
filled 2D Hubbard model is presented for temperatureT = 0.2t and an intermediate on-site
repulsionU = 4t . Using the singular-value decomposition technique we succeed in analytically
continuing the Matsubara Green’s function into the real-frequency domain and in deriving
the spectral representation for longitudinal and transverse spin susceptibility. The simulation
results, while contradicting the random-phase approximation prediction of antiferromagnetic
long-range order at this temperature, are in agreement with an extension of the self-consistent
renormalization approach of Moriya. The static susceptibility calculated using this technique is
qualitatively consistent with theω→ 0 simulation results.

The dynamical magnetic susceptibility in strongly correlated electron systems (SCES)
has been at the centre of attempts to explain the pairing mechanism in high-temperature
superconductivity (HTSC) [1, 2] as well as to understand the normal-state properties of the
HTSC compounds [3, 4]. The frequency dependence of the magnetic susceptibility can be
measured in neutron scattering experiments, thus allowing the assessment of the relevance of
various low-energy models of SCES to HTSC, and the validity of their approximate solutions
over a range of temperatures and dopings. Quantum Monte Carlo (QMC) simulations,
among other numerical techniques, provide an alternative test of these models and of the
applicability of the analytical approximations. These simulations supply direct information
only about the imaginary-time dependence of the correlation functions. Therefore, most of
the information derived from them has been concerned with the static susceptibility [5, 6].
Analytic continuation of QMC data into the real-time domain has been performed recently
to obtain the single-particle spectral weight function [7, 8] and two-particle [9] Green’s
functions. However, a comprehensive dynamical description of the SCES, particularly
of their collective excitations, based on QMC simulations, remains a largely unexplored
area. In this letter we report results of analytic continuation by means of singular-value
decomposition (SVD) to evaluate the dynamical spin susceptibility. These results allow us
to examine spectral characteristics predicted in the spin-density-wave (SDW) treatment [1]
for a 2D Hubbard model at finite temperature.

Interpretations of QMC results for magnetic susceptibility have been mostly related
to random-phase-approximation (RPA) calculations which lead to an SDW ground state
[1]. Comparisons have been made between finite-lattice simulations and RPA results for
an infinite system [5, 10]. RPA calculations however overestimate the value of the Néel
temperature [6, 11] which would only be enhanced in a calculation done on a finite lattice
[12]. Even without this enhancement, the fit of the QMC data to the RPA prediction
requires an artificial correction to the bare Coulomb repulsion in the RPA expression for the
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Figure 1. 1
2χ
′′zz(k, ω) (solid line) andχ ′′+−(k, ω) (dotted line) versusω for selected values

of the lattice momentum, given in the brackets in each figure.χ ′′zz is divided by 2 to make the
comparison easier.

susceptibility [5, 12, 13]. We explored, therefore, an application of an extended version of
the self-consistent-renormalization (SCR) theory which is known to provide a more accurate
description of weak antiferromagnetism [11], and found that for a finite system this theory
agrees qualitatively with the QMC results with no parameter adjustment.

We apply a finite-temperature QMC algorithm simulating the partition function of the
Hubbard model as a path integral of a euclidean field theory. The temperature is represented
by an additional compact dimension whose extent is equal to the inverse temperatureβ.
Matsubara Green’s functionsGS1S2(τ ) for the spin operatorsS1 and S2, satisfying, for
imaginary-time separationτ,G(τ + β) = G(τ), are evaluated as ensemble averages of the
type

GS1S2(τ ) =
Tr
[
eτHS1e−τHS2e−βH

]
Tr e−βH

(0< τ 6 β) (1)

whereH is the Hamiltonian of the system and the trace is taken over all of the degrees of
freedom. Analytic continuation of these functions into real time amounts to a solution of
the following ill-posed inverse problem:

G(τ) =
∫ ∞
−∞

dω
e−ωτ

1− e−ωβ
χ ′′(ω) (0< τ 6 β). (2)

χ ′′(ω) is the imaginary part of the Fourier image of the commutator retarded Green’s
function. The solution forχ ′′(ω) was found using the singular-value decomposition tech-
nique described in reference [8].

We calculate spin-correlation functions derived from QMC simulation data for Matsu-
bara Green’s functions of the type

GSzSz (k, τ ) = 〈(n↑(k, τ )− n↓(k, τ ))(n↑(−k, 0)− n↓(−k, 0))〉
GS+S−(k, τ ) = 〈c†↑(k, τ )c↓(k, τ ) c†↓(−k, 0)c↑(−k, 0)〉 (3)
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Figure 2. The static spin susceptibility versus the lattice
momentum; (a) an 82 lattice, (b) a 102 lattice. The results
of the SCR calculation are shown by◦.

wherec†σ (cσ ) is an electron creation (annihilation) operator with spin projectionσ, nσ =
c†σ cσ , andk is the lattice momentum. The simulations were performed for a single-band
2D Hubbard model with on-site Coulomb repulsionU = 4t (t being the nearest-neighbour
hopping parameter) at a simulation temperature 1/β = 0.2t , and for lattice sizes 82 and
102. The models were simulated at half-filling. We solve equation (2) with its left-hand
side given byGSzSz (k, τ ) andGS+S−(k, τ ), the solutionsχ ′′(k, ω) being the imaginary
parts of the dynamical longitudinal(χzz(k, ω)) and transverse(χ+−(k, ω)) susceptibilities
respectively.

We found that the simulation results were sensitive to the discretization of the imaginary-
time axisδτ . To achieve stable results it was necessary to reduce the spacing to a level
of U δτ = 0.25. In figure 1 we present the results forχ ′′(k, ω) for various values of the
lattice momentumk. The data are based on up to 6700 measurements on an 82 lattice. The
ensemble averages and the statistical errors were estimated using bootstrap analysis. The
analytic continuation has been based on reconstruction with up to seven singular functions
of the kernel in equation (2), which corresponds to the number of singular values whose
ratio to the largest one is larger than the average error(O(10−2)). The Matsubara Green’s
functions were evaluated accordingly at seven values ofτ , their spacing corresponding to the
zeros of the seventh singular vector. The negative side-lobes in the reconstructed function
are due to the limited singular-function bandwidth. As was pointed out in reference [8],
their appearance is similar to that of Airy rings with negative side-lobes which result from
imaging a positiveδ-function over a limited Fourier bandwidth.

A sum rule used in reference [14] for thet–J model can be applied in our case to
examine the extent of double occupancy in the given temperature and coupling regime.
With our normalization (see equation (2)), this sum rule reads

1

N

∫ ∞
0

dω
∑
k

coth
βω

2
χ ′′zz(k, ω) = 〈(Szi )2〉 (4)

whereN is the number of lattice sites. The r.h.s. of this equation was obtained directly
from the simulation data of theτ = 0 spin correlations, and the l.h.s. was obtained from
analytic continuation of the Matsubara Green’s functions. The agreement between these two
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constitutes a consistency check on the analytic continuation. The two calculations do indeed
agree, and give〈(Szi )2〉 ≈ 0.74, which suggests that 13% of the sites are doubly occupied.
This significantly violates the constraint assumed in thet–J model, and undermines the
validity of extrapolating results derived for thet–J model to the Hubbard model in this
regime of coupling and temperature [15].

To compare our results with those derived from the SDW-RPA treatment, we examine
our results with respect to the evidence for long-range antiferromagnetic ordering. The
SDW-RPA treatment predicts, for the size of systems simulated, a Néel temperature
T RPA

Néel ≈ 0.7t , which is above our simulation temperature. The same treatment predicts
also an SDW gap1 = 1.38t at our simulation temperature. This gap would result in
the vanishing of the time-ordered Green’s function,χ ′′zz T (Q, ω), at the nesting vector
Q = (π, π) for ω < 21 [1].

Figure 3. The time-ordered Green’s functionχ ′′zz T (Q, ω). Note the absence of an SDW gap.

We find thatχ ′′(k, ω) for small values ofω has a clear peak atk = Q, which leads also
to a sharply enhanced real part of the static susceptibilityχ ′(Q, ω = 0) calculated using the
Kramers–Kronig relations (figure 2). However, our results contradict two essential SDW
predictions: the spontaneous breaking of rotational symmetry and the existence of a gap in
the spectral function for the magnetic correlations. The ratio of 2 between the longitudinal
and transverse susceptibilities, which is particularly accurate for local correlation functions
and is maintained forχzz(k, ω) and χ+−(k, ω) (figure 1), indicates that the rotational
symmetry is not violated, while the results forχ ′′zz T (Q, ω) (figure 3) show no evidence
for the SDW gap. The persistence of this latter discrepancy with the SDW prediction was
examined for increase of the lattice size to 102 (results for the two lattices are superimposed
in figure 3). Since the sign of the gap is invariant under the change of the staggered
magnetization, if antiferromagnetic order existed in the thermodynamical limit we would
expect a minimum (if not vanishing) ofχ ′′zz T (Q, ω) for small values ofω. This is clearly
absent in our results.

We observe therefore that our results cannot be adequately explained within the SDW-
RPA scheme. The standard RPA result yields forT > TNéel:

χ+−RPA(k, ω) =
χ+−0 (k, ω)

1− Uχ+−0 (k, ω)
. (5)

We note that the non-interacting susceptibilityχ0(Q, 0) calculated for a two-dimensional
finite system at half-filling exhibits a 1/T divergence asT → 0. Therefore, there will
always be a pole of the susceptibility at some non-zero temperatureT RPA

Néel , indicated by
Uχ0(Q, 0) = 1, with a subsequent divergence of the total free energy of a finite system.
This unphysical result is one of the consequences of an inherent shortcoming of the SDW-
RPA treatment, namely, its failure to represent in a self-consistent manner the contribution
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of the spin fluctuations to the free energy. The free energy can be expressed as a functional
in the dynamical susceptibility [11] (see equations (8), (9)). On substituting expression (5)
into this functional and subsequently differentiating it twice with respect to the staggered
magnetization, one fails to recover the static limit of (5). This inconsistency has been
pointed out [11] as the reason for predicting too high values for the Néel temperature of
weakly antiferromagnetic metals. These arguments suggest the need to explore an analytic
approach which would more adequately describe the thermodynamics of the system, if we
are to try to relate our QMC results to any analytical concepts.

Such an approach has been developed as the theory of SCR by Moriya [11]. A
renormalization functionλ is introduced which relates the exact sum of two-particle
irreducible diagrams̃χ+−UM(k, ω) to the free susceptibilityχ+−0M (k, ω) in a given background
staggered magnetizationM:

χ̃+−UM(k, ω) =
χ+−0M (k, ω)

1+ λUM(k, ω) . (6)

This renormalization function enters the calculation of the full susceptibility:

χ+−UM(k, ω) =
χ+−0M (k, ω)3(k +Q)+ U [χ+−0M (k,k +Q, ω)]2

3(k)3(k +Q)− [Uχ+−0M (k,k +Q, ω)]2

3(k) ≡ 1+ λUM(k, ω)− Uχ+−0M (k, ω).

(7)

Here the free Umklapp susceptibility at staggered magnetizationM is denoted by
χ+−0M (k,k +Q, ω). The free energy of the system withNel electrons is given by

F(U,M) = F0(M)+ U
N

(
N2

el

4
−M2

)
+1F(U,M) (8)

where the first two terms represent mean-field free energy and the third one is the correction
due to the collective excitations which can be expressed viaχ+−UM(k, ω) as

1F(U,M) = −T
∫ U

0
dU ′

∑
kων

[
χ+−U ′M(k, iων)− χ+−0M (k, iων)

]
(9)

where ων = 2πT ν. The sum in (9) is dominated byχ+−UM(Q, 0), which justifies
making the long-wavelength static approximationλUM(k, ω) = λUM(Q, 0). In this
approximation, equations (7)–(9) together with the thermodynamical relation between the
static susceptibility and the free energy:

1

χ+−UM(Q, 0)
= 1

2

∂2F(U,M)

∂M2

∣∣∣
M=0

(10)

constitute a set of equations for the susceptibility, automatically maintaining the self-
consistency requirement. Equation (10) can be solved by expandingλUM(Q, 0) in powers
of M. In the next-to-leading-order expansion:λUM(Q, 0) ≈ λ0(U) + (1/2)λ2(U)M

2, we
obtain

λ0(U) = χ+−0M (Q, 0)
∂21F

∂M2

∣∣∣
M=0

λ2(U) = ∂2χ+−0M (Q, 0)

∂M2

∂21F

∂M2

∣∣∣
M=0

. (11)

Since even within this approximation the thermodynamics of the spin fluctuations is
accounted for self-consistently, the qualitative description of the susceptibility is likely
to be more accurate than the one provided by the SDW-RPA treatment. Apparently, due
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to the finite-size 1/T divergence ofχ0, Moriya’s approximation ofλ being independent of
U andM, used in the infinite-system calculation [11], is too crude for this calculation. By
substituting the solution of equation (11) forλUM(Q, 0) into (6) atω = 0, we obtain the
value of χ̃+−U0 (k, 0). The static susceptibility (forT > TNéel) is obtained by replacing
χ+−0 (k, 0) in equation (5) byχ̃+−U0 (k, 0) (figure 2). The calculation of the direct and
Umklapp free susceptibility entering equation (7) was done for lattice sizes 82 and 102.
Thus the finite-size effects, inevitably present in the QMC simulations, have been taken
into account in the analytical calculation. Unlike RPA-SDW treatment results, SCR results
are in principle comparable with the finite-cluster QMC simulations. While exhibiting
strong enhancement of the static susceptibility at the nesting vector, the SCR value remains
finite, in agreement with the QMC result, and as expected for a finite system. Due to the
discrete spectrum of single-particle excitations on a finite lattice,χ ′′0 (k, ω) is a sequence
of δ-functions, and becomes smooth only for an infinite system. An imaginary regularizer
(corresponding to a finite lifetime for a quasiparticle) has thus to be introduced to allow the
calculation of the dynamical susceptibility using equation (7). We found the results to be
sensitive to the value of this regularizer, therefore, a meaningful comparison with the QMC
data can be made only for static susceptibility. The extension of Moriya’s theory presented
here leads to qualitative agreement with the QMC values. The quantitative difference of
approximately a factor of 2 (see figure 2) seems to be a consequence of the pole structure of
the expression for the susceptibility, obtained upon substituting equation (6) into equation
(5). Thus the approximations made in the evaluation of the renormalization functionλ may
account for this quantitative discrepancy. This shortcoming noted, we emphasize that our
calculations were done with no parameter adjustment.

Making a standard approximation,χ ′(q + Q, 0) = χ ′(Q, 0)/(1 + ξ2q2), for small
deviationsq from the nesting vector, we obtain the correlation lengthsξ = 3.0a and
ξ = 3.4a (a being the lattice spacing) for the 82 and 102 lattices respectively. The SCR
estimatesξ = 3.9a and ξ = 4.4a are similar in their values and in the finite-size effects
exhibited. We emphasize, however, that since the correlation length calculated is of the
order of the lattice linear dimension, this estimate can vary as the lattice size increases.

To summarize, the SVD technique is applicable to the derivation of the dynamical
properties of collective excitations in SCES. The dynamical susceptibility obtained from
QMC simulations contradicts the qualitative predictions of the SDW-RPA treatment; in
particular there is no evidence for SDW gap formation in the longitudinal time-ordered
correlation function. Therefore it is unlikely that the gaps observed for this lattice size and
temperature in previous QMC simulations of the single-particle density of states [7] can
be explained within the SDW-RPA, as was indeed pointed out in reference [8]. We note
that on comparing the SVD analytic continuation for the spin dynamics with a maximum-
entropy calculation, we found no qualitative discrepancy between them, in contrast to the
result of a similar comparison for the case of single-particle spectral weight. Our results
support the evidence for the insufficiency of the SDW-RPA picture for describing the
spectrum of excitations of the Hubbard model [16, 17]. Attempts to fit QMC results to
SDW-RPA predictions can be misleading. The qualitative agreement in the static limit
with the SCR calculation points to the importance of including the paramagnon interaction
in the description of the magnetic properties of the Hubbard model. This approach has
previously been used to obtain, on a more phenomenological basis, the dynamics of
collective excitations in HTSC compounds in the normal phase, as well as to calculate
the pairing potential [3]. Our work outlines a way of examining these properties directly
from the lattice-field model by means of numerical simulations as well as by a power series
expansion in the magnetization within the SCR theory.
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